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Abstract

In previous work, a comprehensive, consistent, and concise method has been for-
mulated for identifying a set of forces needed to constrain the behavior of a mechanical
system modeled as a set of particles and rigid bodies. In this paper it is shown that the
method is applicable to motion constraints described by nonholonomic equations that
are inherently nonlinear in velocity. Two new approaches are presented for deriving
equations governing motion of a system subject to such constraints. By using partial
accelerations instead of the partial velocities normally employed with Kane's method,
it is possible to form dynamical equations that either do or do not contain evidence of
the constraint forces, depending on the analyst's interests.

1 Introduction

Motion constraints imposed on a mechanical system are described with nonholonomic (non-

integrable) constraint equations, whereas configuration constraints are expressed with holo-

nomic constraint equations. Two examples of motion constraints with which the reader may

be familiar are the condition of rolling, which is the absence of slipping, and the restriction

on velocity imposed by a sharp-edged blade. These constraints are sometimes described with

equations written in the matrix form au+^3 = 0, where u is a column matrix of motion vari-

ables u l , ... , u,,. Motion variables, also referred to as generalized speeds, are in general linear
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combinations of the time derivatives of generalized coordinates, ql , ... , qn . The distinguish-

ing feature of such equations is that they are linear in the motion variables. Roberson and

Schwertassek (Ref. [1]) note that all known motion constraints imposed on purely mechanical

systems can be expressed with relationships that are linear in velocity variables. However,

one may consider motion constraints that must be described by relationships that are inher-

ently nonlinear in the motion variables, having the form f (q,.... ) qn , u l , ... , un, t) = 0. In

Ref. [2] Bajodah et al. review some of the literature dealing with nonlinear nonholonomic

constraint equations and consider it important to study them because they can arise in

connection with servo-constraints or program constraints when a control system enters the

picture. As explained in Refs. [3] and [4], such constraints are enforced by application of

control forces as opposed to the forces present when bodies and particles come into contact

with one another, as is the case with classical, passive constraints.

Methods for dealing with nonlinear nonholonomic constraint equations are frequently

illustrated by applying them to the Appell-Hamel mechanism. It is studied and discussed,

for example, in Refs. [2] and [5] — [10]; however, it is known that the constraints imposed

on this mechanical system can be expressed with linear relationships. In Refs. [11] and [12],

Zekovich offers several examples of systems in which the constraints can be described with

nonlinear nonholonomic constraint equations. Each example involves planar motion of two

particles connected by a massless rigid rod or by a massless prismatic joint. Sharp-edged

blades are attached in various ways so as to cause the velocities of the particles in an inertial

reference frame N to be parallel, equal in magnitude, or perpendicular. In what follows it

is shown that the associated constraints can in fact be expressed with linear nonholonomic

equations. However, when the particles are not physically connected and the constraints are

dictated by means other than the blades, the relationships expressing such restrictions on

the velocities are inherently nonlinear.

The literature contains additional instances of nonlinear nonholonomic constraint equa-

tions. Another case of planar motion of two particles with parallel velocities, which serves

as an example in Refs. [1], [13], [14], and [15], is brought about with a device proposed by

Benenti in Ref. [16]. Benenti's mechanism consists of six rigid rods, one revolute joint, two
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blades, and a number of prismatic joints. Eight prismatic joints appear to be indicated in

the figure in Ref. [16]; however, it is believed that there must be two successive prismatic

joints in each of the locations indicated if all rods are to be able to move relative to each

other. Jankowski provides two examples in Ref. [17] involving a single particle moving in a

vertical plane subject to a uniform gravitational field and air resistance; the magnitude of the

particle's velocity in N, or the magnitude of the acceleration in N, must match a prescribed

time history. References [13], [8], [18], and [10] include an example proposed by Appell in

which the velocity NvP in N of a particle P must satisfy the relationship v32 = a2(v12+2-22)

where a is a constant and v, are the dot products of Nv P with a set of right-handed, mutu-

ally perpendicular unit vectors n, fixed in N (r = 1, 2, 3). Control of an inverted pendulum

constitutes an example studied in Refs. [13] and [14]. A thin rigid rod moves in a vertical

plane in the presence of a uniform gravitational field, with the lower end of the rod always

in contact with a horizontal line. The system is referred to as Marle's servomechanism; as

proposed in Ref. [8], an actuator controls the horizontal displacement of the rod's lower end

according to some control law in order to keep the rod vertical. An earlier paper by Huston

and Passerello (Ref. [20]) considers the more general case of balancing a pole whose lower

end remains in contact with a horizontal plane, while the pole is otherwise free to move in

the space above the horizontal plane.

In Ref. [21], a comprehensive, consistent, and concise method is established for identif Ting

a set of forces needed to constrain the behavior of a mechanical system modeled as a set of

particles and rigid bodies. The purpose of this paper is to apply the method to constraints

described by nonholonomic equations that are inherently nonlinear in velocity. (It is to

be understood that the term "velocity," used in the general case of a system of particles,

subsumes "angular velocity" in the special case in which a subset of particles makes up

a rigid body. The term "acceleration" likewise encompasses an angular counterpart.) An

essential feature of the method consists of expressing constraint equations in vector form

rather than entirely in terms of scalars. A constraint equation that has been differentiated

once or twice with respect to time, so that it contains the acceleration of a point or the

angular acceleration of a rigid body, is said to be written at the acceleration level. Likewise,
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a constraint equation at the velocity level is one that has been differentiated at most once, so

that it contains the velocity of a point or the angular velocity of a rigid body. The method

developed in Ref. [21] is applied in that work to configuration constraints, and to motion

constraints that are linear in velocity when expressed at the velocity level. It so happens that

the method can be applied whenever constraints can be described at the acceleration level

by a set of independent equations that are linear in acceleration; therefore, it is applicable

to constraint equations that are nonlinear in velocity when written at the velocity level.

The remainder of the paper is organized as follows. First, a treatment of nonlinear non-

holonomic constraint equations is undertaken in Sec. 2 for a generic system of particles; the

results are applicable whether or not a subset of particles makes up a rigid body. The method

of Ref. [21] is used to identify directions of constraint forces and the particles to which they

must be applied. The constraint forces are used together with extensions to Kane's method

(Ref. [22]) to obtain two new ways of deriving dynamical equations of motion. The first of

these is useful when one is interested in the time histories of the constraint forces; it produces

dynamical equations that contain evidence of the constraint forces needed to satisf y the non-

linear nonliolonomic constraint equations. Oil 	 other hand, the second approach can be

used when one is not interested ill constraint forces but requires dynamical equations

governing the motion of the constrained system; constraint forces are not in evidence in the

minimal equations of motion obtained with this approach. The novelty in each case rests in

the use of partial accelerations rather than the partial velocities employed in Kane's method.

Both formulations are applied in Sec. 3 to an example in which the velocities of two parti-

cles must remain perpendicular. The resulting equations of motion are solved numerically.

Constraint forces are identified in Sec. 4 for two other examples in which the velocities of

two particles must either remain parallel, or equal in magnitude. A second demonstration

of the two approaches for obtaining equations of motion is performed with Appell's particle

in Sec. 5, and the equations are compared to existing results. Finally, the two approaches

are adapted in Sec. 6 to the special case in which a system of particles contains a rigid body.

Concluding remarks are supplied in Sec. 7.
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2 Equations of Motion for Complex Nonholonomic Sys-

tems

It is instructive to recall that configuration constraints are, in general, expressed at the posi-

tion level with nonlinear holonomic constraint equations. However, when these relationships

are expressed at the velocity level they are linear in the velocity vectors or, what is the

same, linear in the motion variables as shown in Ref. [21]. Similarly, motion constraints in

general are described at the velocity level by nonlinear nonholonomic constraint equations

but, when expressed at the acceleration level, they are linear in the acceleration vectors.

In other words, when written in scalar form the latter relationships are linear in the time

derivatives of motion variables. Two important conclusions follow from these observations.

First, forces needed to satisfy nonlinear nonholonomic constraint equations can be formed

with the approach described in Ref. [21]. Second, partial accelerations can be used in place

of partial velocities to eliminate the constraint forces from equations of motion in which they

appear.

Suppose that a simple nonholonomic system S (Ref. [22]) is made up of particles P1 ,... , Pv.

The configuration of S in a Newtonian reference frame N is described by generalized coor-

dinates ql , ... , q7Z , and the motion of S is characterized by independent motion variables

u l , ... up . Suppose further that S is subject to P nonlinear nonholonomic constraint equa-

tions

h3(NVPi,..., NV P",t) = 0	 (s = 1 ... ^)	 (1)

where NVPZ is the velocity of particle Pi (i = 1, ... , v) in a Newtonian reference frame N,

and where t denotes time. In this case S is referred to as a complex nonholonomic system.

Differentiation of these relationships with respect to t in N yields

v

^ Napi - Wi.s+ Z3 =0	 (s	 (2)
2=1

where Wis are vector functions of q,.... , qn , u l , ... , up and t in N, and Z, are scalar func-

tions of the same variables. The acceleration of Pi in N is represented by N a Pti . When

these relationships are satisfied the motion variables u l , ... up are no longer independent, as
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discussed presently. According to Ref. [21] one can inspect these relationships and conclude

that constraint forces are given by

C is = A 3Wis	 (i = 1 ' ... , v; S = 1 ' ... , f)	 (3)

where A s are scalar multipliers whose time histories may be of interest. As discussed in Ref.

[21], Cis is parallel to Wis and in general it must be applied to Pi in order to satisfy the

constraint equations (2).

Dynamical equations of motion to which C is do contribute are given by

v

	

F +F* 	 NVP, • CR —m NaPi)
r	 r	 r	 z	 a

i=1

v	 f

_	
NvP2 • Cfi +	 AsWis — mi 

N a P2 I =	 (r = 1, ... p)	 (4)
i=1	 s=1	 J

where Fr , Fr, and Nv Pi respectively denote the rth nonholonomic generalized active force

for S in N, nonholonomic generalized inertia force for S in N, and nonholonomic partial

velocity of Pi in N (Ref. [22]). The mass of Pi is indicated by m i . The resultant Ri of

all contact forces and distance forces acting on Pi is regarded as the sum of the constraint

forces ^s= 1 A,Wis that must be applied to ensure satisfaction of Eqs. (2), added to the

resultant of all other forces, f i . Equations (4) together with Eqs. (2) furnish the number of

relationships needed to solve for the unknown quantities ic 1 , ... , icp , A,,. At . One employs

these relationships if the time histories of A,.... , a t are of interest.

A reduced or minimal set of dynamical equations to which Cis do not contribute is given

by

	

Fr + 
F; 

_	

NaPti • 

^f i +	
ASWis — .mi N a PZ l

=1	 s=1
v

	

_	 Na P^ • (f, — mi Na 
P) = 0
	 (r = 1 ... I c)	 (5)

i=1

where
0c=p —^

is the number of degrees of freedom of S in N. When speaking of Fr and FT it is convenient

to refer to them, respectively, as the rth nonholonomic generalized active force and the

(6)
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rth nonlolonomic generalized inertia force, but the double tilde notation should be used to

indicate they have been formed with NaPi, the rth nonholonomic partial acceleration of Pi

in N, rather than NV Pi . Instructions for obtaining nonholonomic partial accelerations are

now given, and their role in eliminating the multipliers from Eqs. (5) is discussed.

The acceleration of Pi in N can be written uniquely as

P
N a PZ =E 

NaPi itr + NaPi 	 (2 = 1, ... , T/)
	

(7)

r=1

and also uniquely as

N a P2	 NaPiit + iipP	
(i = 1	 T/	 8r	 r	 t	 \	 , )	 (8)

r=1

The first of these expressions can be obtained from Eqs. (2.14.4) of Ref. [22] by differentiation

with respect to t in N, in which case the partial acceleration NaPi is seen to be identical to

the nonholonomic partial velocity of Pi in N,

0NaPi = N^Pi	 (i = 1 ... v; r = 1, ... 
gy p)	 (0)

and the acceleration remainder NaPi is defined to be

P
NaPi	

dt N^Pi^ 
ur + 

dt 
NvPi	 (i = 1, .. , v)	 (10)

Substitution from Eqs. (7) into (2) gives

p	 v	 v N
E	 ar2•Wis ttr +^ at 2•W is +Zs = O 	 (s=1,...,0	 (11)
r=1 i=1	 i=1

The coefficients of it, and the remaining terms can be abbreviated respectively by means of

two definitions,
v

cxsr 	 N aPi • Wis	 (s = 1,...,P; r = 1,.. , p)	 (12)
i=1

and

	

Ys^ Zs +^NaPi•Wis	 (s=1 ... P)	 (13)
i=1

where asr and 7s are functions of ql , ... , qn, u l , ... up, and the time t. These definitions

allow Eqs. (11) to be rewritten in a form that is linear in the time derivatives of the motion

variables
P

asrur + -̂ s = 0	 (s = 1,... ^)	 (14)

r=1



These relationships express the dependence of e time derivatives of the motion variables,

say icy+1 ... it,, on the remaining ones ic li ... , it,. It is assumed that this partitioning

is such that these equations can in fact be solved for it,+1 ... , icp in terms of it,, ... , icy.

With a relationship for N a pi in hand having the form of Eqs. (7), one simply embeds

the acceleration level constraint equations by rewriting ic y+ 1 i ... ,?cp in terms of i11, ... , ii,

to obtain an expression in the form of Eqs. (8). Nonholonomic partial accelerations NaP2

are subsequently obtained in the same way as partial velocities, namely by inspecting the

resulting relationship for acceleration to determine the vector coefficients of ic,. for

1, ... ,c.

The dependent motion variable time derivatives are written in terms of the independent

ones in a manner analogous to Eqs. (2.13.1) of Ref. [22],

icy+T = E AT3 u3 + B,.	 ('r = l ... , f)	 (15)
S=1

To bring Eqs. (14) into this form, begin by putting Eqs. (15) in matrix form,

fLD = Aiai + B
	

(16)

where it, is a c x 1 column array containing the independent quantities ic l , ... , it,, icD is an

f x 1 column array containing the dependent quantities ic y+ 1 i ... ?cp , A is an f x c matrix

whose elements are A,. ,s , and B is an f x 1 column array with elements B,.. Borrowing from

the strategy of generalized coordinate partitioning (Refs. [23] and [24]), Eqs. (14) can be

recast in matrix form with motion variable time derivative partitioning as

aiui + aD UD +'i = 0
	

(17)

where cx i is an f x c matrix, aD is an f x f matrix, and ly is an f x 1 column array whose

elements are 71,... , 7f . The motion variable time derivatives can always be ordered such

that aD has an inverse as long as the constraint equations are independent, thus

?uD = —aD -l0iui — aD -1	 (18)

and comparison of this relationship with Eq. (16) produces the definitions

A —aD -1Cti,	 B °_ —aD -1l,	 (19)
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We are now in a position to undertake two instructive exercises. The first is to determine

the contribution of the constraint forces C is (i = 1, ... , v; s = 1,... , P) to the nonholonomic

generalized active forces F. (r = 1,... p). The second is to show, in general, that Cis

contribute nothing to the nonholonomic generalized active forces Fr (r = 1.... , C).

Nonholonomic generalized active forces for S in N are defined by Eqs. (4.4.1) in Ref. [22]:
v

N-PZ

	

Fr 	 Vr ' Ri 	 (r = 1 ' ... > p)	 (20)
i=1

Let C i represent the resultant of the constraint forces C is applied to Pi in order to ensure

satisfaction of Eqs. (2), so that
e	 e

	

C i 	 Cis =	 AsWis	 (i = 1, ... , v)	 (21)
s=1	 s=1

The resultant Ri of all contact forces and distance forces acting on Pi can then be regarded

as the sum of the constraint force C i and the resultant of all other forces, fi . Hence, Fr is

made up of contributions (Fr ) C from the constraint forces acting on S and (Fr) .F from all

other forces acting on S,

0 r,

	

FT = ( Fr)c + (Fr) 	 NvP^ • C i +	 NvP^ • fi	(r = 1, ... , p)	 (22)
i=1	 i=1

The contribution from the constraint forces can be singled out, and it is given by

	

v	 ^	 E

(Fr)c = ^, NvPZ '	 AsWis = Y ^s^sr	 (r = 1, ... , p)	 (23)

	

i=1	 s=1	 s=1

where a,, has the same meaning as in Eqs. (12).

It can now be shown that the constraint forces C is make no contribution to any of Fr.

Equations (23) can be expressed in matrix form as

	

VITA	 lFI)C
(F)c = aT A =	 _	 (24)

	

aDT A	 (FD)C

where A is an P x 1 column array whose elements are A,,... , Ae, (FI ) C is a c x 1 column

array with elements (Fi)c, • • • , (F,)c, and (FD ) C is an f x 1 column array with elements

(F,+1 ) C7 .... (FP ) C . In view of the analogous relationship between Eqs. (2.13.1) of Ref. [22]

and Eqs. (15), one can write a relationship analogous to Eqs. (4.4.3) in Ref. [22],
P

	

(Fr)c = (F'r)c +	 (P,+s)c Asr	 (r = 1, ... c)	 (25)
S=1
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These relationships can be expressed in matrix form as

(F)c = (FI)c + AT (FD)c

= a jT A + AT aDT A = (al T + ATaDT) A	 (26)

The term in parentheses is observed to vanish by noting

0 = cx1 — ctl = a1 — ODOD -1a1 = 01 + aDA	 (27)

Hence, the transpose of this relationship is a, T  + AT aD T = 0. This step may be viewed as

premultiplication of a  by an orthogonal complement matrix [I, AT], where I, is the c x c

identity matrix. In any event, it is shown that

	

(F,,)c = 0	 (r = 1 ... , c)
	

(28)

or, in words, motion constraints described by inherently nonlinear nonholonomic constraint

equations require the application of forces that make no contributions to any of the non-

holonomic generalized active forces F,.. Because these contributions are defined in terms of

nonholonomic partial accelerations NiiPi as

( Fr)c =	
NaP^ • C^ _	 NaPz •	 A,Wis =	 as	 'v i pz • Wes	 (r = 1, ... , c)

i=1	 i=1	 s=1	 s=1	 i=1

(29)

it can be concluded that

V

Na P^ • WzS = 0	 (r = 1, ... , c; s	 (30)
i=1

3 Two Particles with Perpendicular Velocities

An example is provided to illustrate application of Eqs. (4) and (5) to form equations of

motion in which constraint forces respectively are and are not in evidence. A system of two

individual particles is subject to a requirement that the velocity in a Newtonian reference

frame N of one particle must remain perpendicular to the velocity in N of the other particle.

The associated nonholonomic constraint equation is inherently nonlinear. Implementation
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of the constraint would require the sort of computations that are associated with a control

system, as well as ideal actuators and sensors; thus, the example features a servo-constraint.

The demonstration is followed by discussion of a similar example from the literature in which

the constraint is imposed by purely mechanical means, and it is shown that the nonholonomic

constraint equation can in that case be expressed as a linear relationship.

Two pucks moving on an air-bearing table fixed in a Newtonian reference frame N are

modeled as particles P1 with a mass of m l , and P2 with a mass of "1,2. Let two orthogonal

unit vectors n1 and n2 be fixed in N and define the plane of the table, and let unit vector

n3 
o ni x n2 be normal to the plane. An external force f l = 61 n1 + Q2n2 is applied to P1

whereas a force f 2 = 63n1 + 9462 is applied to P2 . The motion of this system is regarded

as unconstrained. Suppose that the velocities NV P, and N V P2 of P1 and P2 in N are to be

constrained such that they must remain perpendicular at all times. Let m 1 = 1 kg, m 2 = 2

kg, and let f 1 and f2 be characterized by the constants Q1 = 1.0 N, Q2 = 0 N, Q3 = 1.0 N,

and Cr4 = 0 N. At t = 0 the velocities of P1 and P2 in N are given by N V Pl = 0.3n 1 + 0.4n2

m/s, and N V P2 = 0.4n 1 — 0.3n 2 m/s. The initial position vectors p i from a point O fixed in

N to Pi are given by p1 = 1n 1 — 2n2 m, and p2 = 1n 1 + 2n2 m.

First, a constraint equation is written at the acceleration level in vector form. It is

inspected to construct expressions for the constraint forces that must be applied to P 1 and

P2 in order for the constraint to be obeyed. A constraint force can be applied to a puck,

for example, by four orthogonally mounted thrusters. Equations (4) are then employed to

produce dynamical equations of motion in which the constraint forces play a part, and these

equations are solved numerically together with kinematical differential equations.

The constraint can be expressed by the relationship

N V P2 
• NVPI = 0
	

(31)

This constraint equation is nonlinear in the velocity vectors because more than one velocity

appears in a dot product; it is also nonlinear in motion variables, as will become apparent.

Differentiation with respect to t in N brings the constraint equation to the acceleration level,

where it is seen to be linear in the acceleration vectors because only one such vector appears
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in each dot product.

N a P2 • N V Pl + N a Pl • N V P2 = 0	 (32)

With Eqs. (2) and (3) in mind, it can be concluded that the constraint requires application

of the forces

C2 = A N V P1 ,	 C1 = ANVP2	 (33)

to P2 and P1 respectively. The constraint forces C 1 and C 2 need not be of equal magnitudes

because the constraint does not require NV P2 and NVP, to be equal in magnitude. The

constraint force C 1 is perpendicular to C 2 when the constraint is satisfied.

The unconstrained system possesses four degrees of freedom in N, thus the motion can

be characterized by four motion variables defined operationally as

	

NV P' = 21 1 n 1 + u2n2,	 NV P2 = u 3n 1 + u4 n2	 (34)

Dynamical equations of motion formed according to Eqs. (4) are readily written as

1721211 = 61 + A213, 1721212 = 62 + Au4, 1722213 = 93+ Aul i 1722214 = u4+ A212	 (35)

The constraint expressed at the velocity level in vector form by Eq. (31) becomes, in scalar

form,

211213 + 212214 = 0	 (36)

This relationship is nonlinear in the motion variables. The constraint at the acceleration

level is, however, linear in the time derivatives of the motion variables,

	

u3 u 1 + u4u2 + u lu3 + u2u4 = 0	 (37)

An analytical solution of the linear system of equations (35) and (37) for the five unknowns

is manageable, and is given by

A
M1 (63u1 + 94u2) + m 2 (61 u3 + 172u4)	

( 38 )_ — 
1721(211 2 +212 2 ) +1722(213 2 +2142)

Q1+A213	 62+A214	 93+Aul	 94 +A212
211 =	212=	 , 213 = 	, 214 =	 ( 39)

M1	 m1	 1722	 1722
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The configuration of P1 and P2 in N is described by four generalized coordinates introduced

operationally as

P 1 = g 1 n1 + g2 1C1 2> 	 P2 = g3 n1 + g4 1h2 	 (40)

Four kinematical differential equations are given simply by

4,. = u,.	 (r = 1, 2, 3, 4)	 (41)

The unconstrained trajectories (a = 0) of P1 and P2 are displayed in the upper left

of Fig. 1, to be compared to the constrained trajectories shown in the upper right. It

is clear that NV P, and NV P2 are becoming parallel in the absence of constraint forces,

whereas they remain perpendicular when C 1 and C2 are applied. A time history of a is

shown in the lower left of Fig. 1. The constraint requires N V P2 to remain perpendicular

to N V Pl ; hence, the cosine of the angle between the two vectors calculated as cos e =

NV P2 ' NV 
1/(J 

NV 
I 

I I NV 
I 

I ), which should be 0, can be used as a measure of the failure

of the numerical solution to satisfy the constraint. As seen in the lower right of Fig. 1, the

solution meets the constraint very well.

One can virtually eliminate the small error evident in the time history of cos B and

remove A from the dynamical equations of motion by appealing to Eqs. (5). Starting with

the accelerations in N of P1 and P2 expressed as

N a P1 = u lnl + 2G21V	 N a P2 = 263111 + 2G4n2	 (42)

and substituting the expression for u4 obtained from Eq. (37), one arrives at

N
a Pl = ulnl + u2n2,	

N aP2 
= u3n 1 — 

2d 
(u3u1 + u4u 2 + u 1 u3) n 2	 (43)

2

The nonholonomic partial accelerations of P1 and P2 in N are identified as

Na Pl 
=n	 Na P, = f12,	

Na P, = 0 (44)1	 1,	 2 	 3

	

Na P2 — —u311	 NaP2 — — u4 ^	 NaP2 = n u11	 n	 (45)—	 2	 2	 1—	 2
262	 262	 262

With these partial accelerations in hand, nonholonomic generalized active forces are formed

according to the expressions

F, = NaP, • (f l +^ N V P2 )+ NaP2 • (fz +^ NV Pi )	 (r =1,2,3)	 (46)
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Figure 1: Two Particles with Perpendicular Velocities

The first of these is given by

Ft = fit • (ft + A 
N

vPZ ) — 
_

ii2 • (f2 + A
NV Pl)

U2
2c

= Qt + AU3 — 3 (U4 + AU2)
U2

=
U3	

(47)Q t — U2 64

Similarly,

U4	
(48)F2 = 92 — 2G 94

2

ut
F3 = Q3 — 2G Q4	 (49)

2

The multiplier A is clearly eliminated from Fl , F2 , and F3 , and thus the constraint forces

C  and C 2 do not contribute to the reduced equations of motion. Nonholonomic generalized

inertia forces are given by

Fr = NaPI • (—ml N a Pl ) + NaP2 • (—M2 N a pe )	 (r = 1, 2,3)	 (50)
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or

U3Fi = -9721261 - M2 
u 2 

(u32G1 + u4262 + u1263)
2

	

m 1 + m2 Q261 - m2 u3u4 262 - m2 u1u3 763	 (51)
 2622	 2622

2G
F2 = -7711262 - m2 

u 
2 (u32 61 + u4262 + u1263)

2
2

	

-l)22 u3 24 261 - IM1 +m2 (
U2
u4

J 
u2 - m2 u1 24 u3	 (52)

2l2 	 262

u
F3 = -m2u3 - m2 

u 2 
(u3u1 + 26 4u2 + ulu3)

2

261263
= -m 2 2 u1 -M2 2 U2 - m2 1 + (

U,)21

 
u3	 (53)

262	 u2	 262

The mass matrix associated with these equations of motion is symmetric. After expressing u4

as —u 1u3 /u2 as required by Eq. (36), the reduced dynamical equations of motion F,. + Fr = 0

(9° = 1, 2,3) and the kinematical differential equations (41) are integrated numerically using

the initial conditions given in the problem statement. The paths of P1 and P2 are identical

to those shown in the upper right plot of Fig. 1, and the absolute value of cos9 remains less

than 7.64 x 10-17 throughout the simulation.

In Refs. [11] and [12] Zekovich provides examples in which velocities of two particles are

to remain perpendicular to one another. However, all configuration constraint is

imposed on P1 and P2 i they are connected by a "fork" that allows relative translation along

the line joining P1 and P2 . In other words, P1 is regarded as fixed in a rigid body B, and a

prismatic joint makes it possible for P2 to move on B. A relationship having the form of Eq.

(36) is given, and put forth as an example of a nonlinear nonholonomic constraint equation.

The development in Ref. [11] is greatly simplified by working with a set of motion variables

to be defined presently; furthermore, they are used to show that the relevant nonholonomic

constraint equations can be written as linear expressions.

Let perpendicular unit vectors b l and b2 be fixed in B such that they lie in the plane of

motion of P1 and P2i and b l is in the direction of the prismatic joint that permits P2 to slide

oil 	 Unit vector b 3 is perpendicular to b l and b2 , and to the plane of the motion. Four
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motion variables are introduced operationally by writing Nv PI = u1b1 +u2b2, Nw B = u31 3,

and B V P2 = u4 b 1 . The angular velocity of B in N is denoted by Nw B , and the velocity

of P2 in B is indicated by 13v P2 . Hence, N V P2 = (u1 + u4)b1 + (u2 + g4u3 )b2 , where q4

is the distance between P1 and P2 . The perpendicular velocity constraint is expressed as

NV 
P2 ' NV P1 = u1(u1 + u4) + u2 (u2 + g4u3) = 0.

Zekovich begins the analysis by attaching a sharp-edged circular disk, or blade, at P1 with

the edge perpendicular to b 1 i the resulting constraint is expressed linearly as N V PI • b 1 =

u 1 = 0, and the corresponding Eq. (8) in Ref. [11] is likewise linear. With u 1 = 0, the

velocity constraint is rewritten as NV P2 • NV PI = u2 (u2 + g4u3) = 0, which corresponds to

Eq. (9) of Ref. [11]. Zekovich then notes the constraint can be satisfied in either of two

ways. The first possibility is imposition of the constraint expressed by the linear equation

NV PI • b2 = u2 = 0, in which case P1 is fixed in N and the blade at P1 is no longer

necessary. The second possibility also involves a constraint described by a linear relationship

NV P2 • b2 = u2 + g4u3 = 0; such a restriction can be imposed by fixing a blade at P2

with the edge orthogonal to b 2 . The presence of perpendicular constraint forces exerted by

perpendicular blades is in keeping with the result of Eqs. (33), although it contradicts the

direction of R2 indicated in Fig. 3a of Ref. [11].

4 Other Examples

Other restrictions on the motion of two separate particles give rise to nonholonomic con-

straint equations that are inherently nonlinear. Constraint forces required to ensure that

the velocities in N of the two particles remain parallel, or equal in magnitude, are discussed

briefly. This is followed with a mention of two examples involving a single particle.

First consider the requirement that NV PI and N V P2 be parallel to each other. The

constraint can be expressed as follows. The vector 113 x N V PI is perpendicular to n3 and

to NV P1 by construction; therefore, requiring NV P2 to be parallel to NV PI is the same as

requiring

NV PZ • (T13 X N V PI ) = 0	 (54)
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This constraint equation is observed to be nonlinear in the velocity vectors because more

than one velocity appears in a dot product. Differentiation with respect to t in N brings the

constraint equation to the acceleration level, where it is seen to be linear in the acceleration

vectors.

N aP2 • (n3 X N V PI ) — N apl • ( li3 X 
NV PZ

) = 0	 (55)

In view of Eqs. (2) and (3), the constraint requires application of the forces

C2 = A(n3 X N V PI ),	 C1 = — '\(n3 X N V P2 )	 ( 56)

to P2 and Pl respectively. The constraint forces C 1 and C 2 need not be of equal magnitudes

because the constraint does not require N V P2 and NVPI to be equal in magnitude. Moreover,

C 1 and C2 may have the same direction or opposite directions depending on whether the

directions of NV PI and NV P2 are opposite or the same.

The first example in Refs. [11] and [12] is similar to the preceding situation, but an

additional configuration constraint is imposed on Pl and P2 i they are connected by a rod

of fixed length 2L. It is said that the requirement of parallel velocities can be achieved

in practice by attaching at the rod's midpoint a blade that is perpendicular to the rod. A

relationship is given with the form of Eq. (54) written entirely in terms of scalars, and offered

as an example of a nonlinear nonholonomic constraint equation. However, in this instance the

constraint dictated by the blade can in fact be described by a linear nonholonomic constraint

equation. There appears to be some recognition of this in Ref. [11]. The directions of the

constraint forces obtained in Eqs. (56) are seen to be the same as those indicated in the

diagram on the right side of Fig. 2a in Ref. [11].

Next, suppose that NV 
P, and NV P2 are required to have equal magnitudes rather than

parallel directions or perpendicular directions. The constraint can be expressed by the

relationship

NV P2 • N V P2 — NV PI • NV P1 = 0	 (57)

which is nonlinear in the velocity vectors. The acceleration level of the constraint equation

is linear in the acceleration vectors,

N a P2 • N V P2 — N a P, . N V PI = 0	 (58)
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According to Eqs. (2) and (3), the constraint requires application of the forces

C 2 = A NV P2 ,	 Ci = -A NV Pi	 (59)

to P2 and Pl respectively. It is seen that C 1 and C 2 have equal magnitudes when the

constraint is obeyed.

The second example in Ref. [11] involves two particles whose velocities are to remain

equal in magnitude; however, an additional configuration constraint is imposed on P1 and

P2 as they are connected by a rod of fixed length. Zekovich observes the velocities are made

equal in magnitude by placing a blade at the rod's midpoint and making the edge parallel

to the rod. An expression having the same form as Eq. (57), written entirely with scalars, is

offered as a nonlinear nonlolonomic constraint equation. As is the case with Zekovich's first

example, it can easily be shown that a linear nonholonomic constraint equation describes the

constraint dictated by the blade. The diagram on the right side of Fig. 2b in Ref. [11] shows

a constraint force in the direction of N V Pi and the other constraint force in the direction

opposite to N  P2 ; this result can be made to agree with Eqs. (59) by renaming the two

particles.

Jankowski has developed an approach for dealing with constraint equations that are not

necessarily linear in acceleration. A procedure is set forth in Ref. [17] for forming dynami-

cal equations of motion in which Lagrange multipliers do appear, and then the multipliers

are eliminated by employing an orthogonal complement matrix to obtain a reduced set of

equations. As mentioned previously, the paper concludes with an example involving a sin-

gle particle P. It is readily demonstrated that Eqs. (4) and (5) can be used to obtain the

results reported in Ref. [17] when the magnitude of the velocity N V P of P in N must have

a prescribed time history; that is, NvP P. NV P — v(t) 2 = 0. Moreover, inspection of this

constraint equation at the acceleration level indicates the constraint force applied to P is in

the direction of N V P , and Jankowski reaches the same conclusion. However, Eqs. (4) and

(5) are not applicable to the subsequent case in which the magnitude of the acceleration

N a P of P in N is a prescribed function of the time t, N a P • N a P — a(t) 2 = 0
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5 Appell's Particle

As mentioned earlier, the literature contains ample discussion of an example proposed by

Appell in which a single particle must move in a uniform gravitational field so as to satisfy a

nonlinear nonholonomic constraint equation. In connection with this example, a final brief

demonstration of the use of Eqs. (4) and (5) shows that they lead to results obtained by

Smith' and Van Dooren (Ref. [19]).

Three motion variables u l , u2 i and u3 are introduced such that the velocity NVP in a

Newtonian reference frame N of a particle P is written as

N 
V 

P = ulnl + u2n2 + u3T13
	 (60)

where n l , n2, and n 3 are a right-handed set of mutually perpendicular unit vectors fixed in

N. Appell's restriction on the velocity of P is often expressed by the relationship

u32 = a2 (ul2 + u22)
	

(61)

where a is a constant. It is pointed out by Smith that the relationship describes a requirement

for the angle - • between NV P and n3, the vertical direction, to remain constant. In fact, the

constant a is cos -y/ sin -^. The nonlinear nonholonomic constraint equation is differentiated

with respect to time to brin g it to the acceleration level

2u3763 = 2a2 (u 1 u 1 +u2u2)
	

(62)

where it is linear in ii i , i12 i and i13; it can be rewritten as

N a P • f13 — a(ul N aP - n1 + u2 N aP - n2) = N a  ' 
L
n3 — a (u 1 n1 + u2112)

J
 = 0 (63)

U 3	 U3 

where N a P is the acceleration of P in N. Inspection of this equation according to Eqs.

(2) and (3) indicates that a constraint force C must be applied to P such that the force is

parallel to the vector within the square brackets; that is,

I

C = A n.3 
a2 

(ulnl + u2n2)
IU3

1 Smith, C., "Comments on Geometric Constraints, Virtual Displacements, and Ideal Constraint Forces,"

private communication, Sept. 25, 2002.

(64)
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This result is in agreement with what is presented by Smith, who shows that C • "' T v P = 0

when N V P obeys the constraint.

The gravitational force acting on P is denoted by f = —MA where m is the mass of

P and the constant g represents the gravitational force per unit mass. Three dynamical

equations of motion obtained with Eqs. (4) can be written in terms of vectors as li,. • (f +

C — m N a P) = 0 (r° = 1, 2, 3), or in terms of scalars

	

mi11 = —Aa 2u1/u3,	 mu2 = —Aa 2u2/u3,	 mu3 = A — mg	 (65)

in which case they resemble certain expressions found by Smith. When one substitutes u3

obtained from the constraint equation (61), the results are identical to Eqs. (3.7) of Ref. [19],

micl = —Aa	
u1	

m.i12 = —Aa	
u2	

,	 ica = A — mg	 (66)

	

211 2 + u2 2 	2112 + u22	
m

The fourth relationship needed to determine the unknowns i1 1i i12, i1 3 , and A is provided by

Eq. (62); when it is solved for u 3 and substitution is performed in the third of Eqs. (66), one

obtains

	

2	 2	 2

A = mg + ma (211211 + u2u2) = m.g —	
a	 r ^a(ul + u2 ) 1 = mg — aa2	(67)

	

U3	 u12 + u2 2 L	 2112 + 2122 J

where the second step is made with the aid of Eq. (61) together with the first and second of

Eqs. (66). A solution for A is now at hand, and it can be used as a replacement in the first

and second of Eqs. (66) to yield

A	
1 

+ 
a2 — 

mg sin  7 (68)

gao l
u1 = —	 —

g sin /I cos l u1
— (69)—+U22

\1 + a2)	
u 12 —+U22u12

gau2
U2 = —	 —

g sin	 cos f u2
— (70)

\1 + a2)	
u12+ u22 u12 + u22

The dynamical equations of motion (69) and (70) from  which A has been eliminated can

be obtained directly, instead, by resorting to Eqs. (5). After embedding the acceleration

level constraint equation in N a P,

N P —	 a(ulicl + u2u2)a — u lnl + 2G Z nz +	 na	 (71)VU- + u22
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the required nonholonomic partial accelerations of P in N are readily identified to be

Nt_ P —	 aul	 A,_ P —	 au2a — nl +	 n3, 	 a2 n2 +	 na( 72)1	 u==, 
+U2

2	 2	 u12 + u22

The two equations of interest are then produced from NaI • ( f + C — n2 N a P ) = NaP • ( f —

M N a P ) = 0 (r = 1, 2). Although some effort is required because the equations are coupled

in it, and ic2i Eqs. (69) and (70) are recovered.

6 A System Containing a Rigid Body

There are certain concepts that the exposition in Sec. 2 has in common with that of Ref. [10].

The authors of that work recognize constraint equations that are nonlinear at the velocity

level become linear at the acceleration level, and they note the relationship between partial

acceleration and partial velocity expressed ill (J). They make use of these observations

to form equations of motion that are equivalent to Eqs. (4), and form generalized constraint

forces that are expressed with the final term in Eqs. (23). It is pointed out that the unknown

multipliers representing the constraint forces can be eliminated and a reduced set of equations

of motion can be obtained. There are, however, a number of differences between what is

presented here and in Ref. [10]. In that work, the development is restricted to the case

where each motion variable is defined as the time derivative of a generalized coordinate,

and remainder terms such as NvPi or NvP, are not accounted for. Constraint forces are not

constructed from vector forms of the constraint equations as they are here in connection with

Eqs. (2) and (3); therefore an explicit relationship between the multipliers and constraint

forces is not provided. Their development requires partial velocities to be expressed in

a vector basis fixed in an inertial reference frame, which is not necessarily convenient or

efficient. The most significant difference is that, although their reduced equations of motion

are similar to Eqs. (5), reduction is accomplished by premultiplication with a nonunique

orthogonal complement matrix that can be formed in a variety of ways; in contrast, the

nonholonomic partial accelerations proposed here are unique once motion variables have

been chosen, and they are formed by the same definite process of inspection used to obtain
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partial velocities. Finally, the Appell-Hamel mechanism is used to illustrate their method,

even though it is known that the nonholonomic constraint equations can be expressed in a

linear form.

The apparatus of Ref. [10] deals with rigid bodies rather than sets of individual particles;

the development of the present approach is completed by fashioning rigid-body theorems for

the foregoing results.

When particles Pl , ... , Pa snake up a rigid body B, the acceleration N a P2 in N of a

generic particle Pi of B can be written in terms of the angular acceleration Na B of B in

N, the angular velocity N  B of B in N, and the acceleration N a B* in N of B*, the mass

center of B,

	

NaPi = 
N a B* + N a B x ri + N W B x ( N W B x ri)	 (i = 1 ...,^3)	 (73)

where ri is the position vector from B* to Pi . Now, Na B can be expressed uniquely as

Na B = E Na B ur + Na B	 (74)r	 t
r=1

where NaB is called the rth nonholonomic partial angular acceleration of B in N. Substi-

tution from this relationship and from Eqs. (8) into (73) yields

	

C	 c

Na 
pi 

2 + Na Pi -	 Na B* 
2G + 

Na B*
r	 r	 t	 r	 r	 t

	

r=1	 r=1
c

+ ^ Na B ur + Na
B X ri + NW B x (NW B X ri) (2 = 1,... /3)	 (75)

r=1

from which one obtains

	

N
iiP, = NaB* + NaB X ri + 1'^WB x (

NW B x ri)	 (? = 1, ... , 6)	 (76)

and

NaP, = NaB* + Na
B x	 cr	 (^° = 1	 i = 1	 C3)	 (77)

2	
^..	

,	 ;	 >	
,

The latter relationship is the nonholonomic partial acceleration analog to nonholonomic par-

tial velocity expressions like Eqs. (4.6.5) and (4.11.16) in Ref. [22] used in the case of simple

nonholonomic systems to obtain contributions of B to Fr and F,*. Hence, the contribution
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of B to Fr is given by

_	 a

( F )B = E NaP, .r
i=1

— 
> (Na B*

r
i=1

Ri

+ ''^' a B x ri Ri = NaB	 Ri + l' & •	 ri x Ri
i=1	 i=1

*

= NaB • R + Nar • T	 (r = 1 ... , c)

where the set of all contact and distance forces R i acting on the particles of B is equivalent

to a force R. whose line of action passes through B*, together with a couple whose torque is

T. The constraint forces and torques that must be applied to B in order to satisfy nonlinear

nonholonomic constraint equations may be included in R and T, or they may be omitted;

in either case they will not contribute to (Fr) B . With a similar exercise the contribution of

B to F,* is found to be

( F*1 B ° _ 	 NaPi , mi N aPiT
2=1

(Na
+ N&B* 

+	 B X ri , 97ZiNaPi
i=1

0	 Q
NaB*	 N P, _ N - B •	 NPi_ — ar	 9ni a	 r	 ri x mi a

i=1
*

ar	 R* + ar T*	 (r = 1, ... , c)	 (79)

where R* and T* are, respectively, the well known inertia force and inertia torque for B in

N formed for use with Kane's method.

The procedure for obtaining a minimal set of dynamical equations of motion for a complex

nonholonomic system is seen to bear a very close resemblance to Kane's method for simple

nonholonomic systems, the only difference being that one uses NaB* and NaB( I . = 1, ... , c)

rather than NvB* and 1^rWB (r = 1, ... , p).

One may be interested in the constraint forces acting on a rigid body, and therefore form

equations of motion according to Eqs. (4). In that event it becomes desirable to adapt the

process of inspecting a constraint equation written at the acceleration level so that one may

identify the direction of a constraint force and the point to which it is applied, together with

the direction of a constraint torque and the body upon which it is exerted.

(78)
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In a constraint equation having the form of (2), the terms associated with P1i ... , P,3 can

be rewritten:

s
Napz • Wis+ZS

i=1

0

a + Na	
r

xri + w B x( NW I xri)]•Wis+ZS
i=1

0	 a	 0
N Q= a ^ Wis + 

Nall ̂ ri X Wis + 	 W X ( W X ri)] •W is + Zs
i=1	 i=1	 i=1

L 
N aQ Ws + NaB • TS + ZS	 (s = l ... l)	 (80)

where ri is the position vector from a point Q fixed in B to Pi (i = 1,... „13). As discussed

in connection with Eqs. (2) and (3), the appearance of the vector Wis in Eqs. (80) requires

the application of a constraint force Cis = ASW is to Pi . After selecting the line of action of

Wis such that it passes through Pi , and defining the resultants

a	 a

	

WS 	 W iS,	 CS	 CiS	 (s = 1 ... , P)	 (81)
i=1	 i=1

the set of forces Cl, ... , C,3s applied to B is regarded as equivalent to a single force CS

whose line of action passes through Q, together with a couple whose torque is T s . The

resultant CS is given by

a	 13

	

C S =	 C is =	 AS Wis = aS Ws 	(s = 1, ... , P)	 (82)
i=1	 i=1

and the torque T S is equal to the moment of C 1,,... , Cas about Q,

	

a	 a
Ts	ri x Cis =	 ri x A S WZS = AS ,r ,	 (s = 1 ... P)	 (83)

	

i=1	 i=1

where TS is the moment of Wls , ... , W,3s about Q,

3
rs °_ Y ri x Wis	 (s = 1 ... , f)	 (84)

i=1

One can therefore inspect a constraint equation written at the acceleration level and

conclude that the appearance of the dot product N a Q • WS requires that B is subject to a

constraint force C S = A SWS applied to Q, and the appearance of the dot product Na B • TS

means B must be acted upon by a couple whose constraint torque is TS = asTs (s = 1 ... , 0.
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7 Conclusions

Motion constraint equations that are nonlinear in velocity, and thus represent nonclassical

servo-constraints or program constraints, become linear in acceleration after they are differ-

entiated with respect to time in N. Hence, one can use the following method to identify a

set of constraint forces necessary to ensure that a mechanical system composed of particles

and rigid bodies obeys the restrictions. The appearance of a dot product such as N a P • W.

where N a P is the acceleration of a point P in a Newtonian reference frame N, indicates a

constraint force AW must be applied to P; A is a scalar multiplier. When the mechanical

system contains a rigid body B, the angular acceleration Na B of B in N may appear in a

dot product such as N cc B • -r in a constraint equation written at the acceleration level, in

which case a constraint couple whose torque is A-r must be exerted on B.

This paper furnishes additional evidence that the method is comprehensive; as shown

in Ref. [21], it is useful also in connection with configuration constraints described by holo-

nomic constraint equations, and motion constraints expressed by nonholonomic constraint

equations that are linear in velocity. As demonstrated here by several examples, this method

is especially advantageous in cases where the required direction of a constraint force is not

otherwise obvious.

The use of partial accelerations, instead of the partial velocities normally employed with

Kane's method, leads to the development of two new approaches for deriving equations of

motion for a complex nonholonomic system; that is, a system subject to constraints expressed

at the velocity level with equations that are nonlinear in velocity. The two algorithms

enable construction of dynamical equations that either do or do not contain evidence of the

constraint forces, according to the interests of the analyst.
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